Selected Solutionsfor Chapter 16:
Greedy Algorithms

Solution to Exercise 16.1-4

Let S be the set ofi activities.

The “obvious” solution of using @EEDY-ACTIVITY-SELECTORtO find a maxi-
mum-size sef; of compatible activities fron$ for the first lecture hall, then using
it again to find a maximum-size s84 of compatible activities frony — S, for the
second hall, (and so on until all the activities are assiynedjuires®(n?) time
in the worst case. Moreover, it can produce a result that osee lecture halls
than necessary. Consider activities with the interygls4), [2, 5), [6,7), [4, 8)}.
GREEDY-ACTIVITY-SELECTOR would choose the activities with intervals, 4)
and |6, 7) for the first lecture hall, and then each of the activitieshwiritervals
[2,5) and[4, 8) would have to go into its own hall, for a total of three halleds
An optimal solution would put the activities with intervdls 4) and[4, 8) into one
hall and the activities with intervalg, 5) and[6, 7) into another hall, for only two
halls used.

There is a correct algorithm, however, whose asymptoti@ timjust the time
needed to sort the activities by timed4n Igr) time for arbitrary times, or pos-
sibly as fast a®) (n) if the times are small integers.

The general idea is to go through the activities in order aftdime, assigning
each to any hall that is available at that time. To do this, entbwough the set
of events consisting of activities starting and activifiiesshing, in order of event
time. Maintain two lists of lecture halls: Halls that are & the current event-
time ¢ (because they have been assigned an activibiat started at; < ¢ but
won't finish until f; > ¢) and halls that are free at time (As in the activity-
selection problem in Section 16.1, we are assuming thatigctime intervals are
half open—i.e., that if; > f;, then activities andj are compatible.) When
is the start time of some activity, assign that activity taeefhall and move the
hall from the free list to the busy list. Whernis the finish time of some activity,
move the activity’s hall from the busy list to the free lisThe activity is certainly
in some hall, because the event times are processed in ordéhea activity must
have started before its finish timghence must have been assigned to a hall.)

To avoid using more halls than necessary, always pick a atlias already had
an activity assigned to it, if possible, before picking aerewsed hall. (This can be
done by always working at the front of the free-halls list-+mg freed halls onto
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the front of the list and taking halls from the front of thetdisso that a new hall
doesn’t come to the front and get chosen if there are prelyiawsed halls.)

This guarantees that the algorithm uses as few lecture dml®ssible: The algo-
rithm will terminate with a schedule requiring < n lecture halls. Let activity
be the first activity scheduled in lecture hall The reason that was put in the
mth lecture hall is that the firsk — 1 lecture halls were busy at time. So at this
time there aren activities occurring simultaneously. Therefore any schedust
use at least: lecture halls, so the schedule returned by the algorithmtisnal.

Run time:

* Sort the2n activity-starts/activity-ends events. (In the sortedevrdn activity-
ending event should precede an activity-starting eventstet the same time.)
O(n lgn) time for arbitrary times, possiblg (») if the times are restricted (e.g.,
to small integers).

* Process the events i(n) time: Scan th@n events, doing) (1) work for each
(moving a hall from one list to the other and possibly asdowjean activity
with it).

Total: O(n + time to sor}

Solution to Exercise 16.2-2

The solution is based on the optimal-substructure observat the text: Leti
be the highest-numbered item in an optimal solutibfor W pounds and items
1,...,n. ThenS§S” = § — {i} must be an optimal solution fo#’ — w; pounds
and itemsl, ...,i — 1, and the value of the solutia$i is v; plus the value of the
subproblem solution”’.

We can express this relationship in the following formula&fiDec[i, w] to be the

value of the solution for items, . . . ,i and maximum weightv. Then
0 ifi=00rw=0,
cli,w] =< cli —1,w] if w; >w,

max(v; +cli — 1, w —w;],c[i — L,w]) ifi >0andw > w; .

The last case says that the value of a solution fiems either includes item,

in which case it isv; plus a subproblem solution for— 1 items and the weight
excludingw;, or doesn't include iten, in which case it is a subproblem solution
for i — 1 items and the same weight. That is, if the thief picks iterhe takes);

value, and he can choose from iteins..,i — 1 up to the weight limitw — w;,
and geftc[i — 1, w — w;] additional value. On the other hand, if he decides not to
take itemi, he can choose from itenis. .., i — 1 up to the weight limitw, and get

c[i — 1, w] value. The better of these two choices should be made.

The algorithm takes as inputs the maximum weightthe number of items, and
the two sequences = (vq, v,, ..., v,) andw = (wy, w,, ..., wy,). It stores the
cli, j] values in a table[0..n,0.. W] whose entries are computed in row-major
order. (That is, the first row af is filled in from left to right, then the second row,
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and so on.) At the end of the computatieify, W] contains the maximum value
the thief can take.

DYNAMIC -0-1-KNAPSACK(v, w,n, W)

letc[0..n,0.. W] be anew array
foorw =0toW
c[0,w] =0
fori =1ton
c[i,0] = 0
forw =1toW
ifw, <w
ifvi+cli—1,w—w;]>c[i —1,w]
cli,w] =v; +cli = 1,w—w;]
deecli,w] = c[i — 1, w]
deecli,w] = c[i — 1, w]

We can use the table to deduce the set of items to take by startingatWW] and
tracing where the optimal values came frome[if, w] = ¢[i — 1, w], then itemy is
not part of the solution, and we continue tracing with— 1, w]. Otherwise itemi
is part of the solution, and we continue tracing with— 1, w — w;].

The above algorithm takes(n W) time total:

* OmW)tofillinthec table:(n +1)- (W + 1) entries, each requirin@(1) time
to compute.

* O(n) time to trace the solution (since it starts in ravof the table and moves
up one row at each step).

Solution to Exercise 16.2-7

Sort A and B into monotonically decreasing order.

Here’s a proof that this method yields an optimal solutioons§lder any indices
and;j such thai < j, and consider the ternas® anda;% . We want to show that
it is no worse to include these terms in the payoff than taidek;® anda;?, i.e.,
thata;%a;% > a;%a;%. SinceA and B are sorted into monotonically decreasing
order andi < j, we havea; > a; andb; > b;. Sincea; anda; are positive
andb; — b; is nonnegative, we havg? =%/ > a;%~b; Multiplying both sides by
a,-bfajbf yieldsaibiajbf > aibfa‘,-bf.

Since the order of multiplication doesn’t matter, sortid@and B into monotoni-
cally increasing order works as well.



